5,894 research outputs found

    Identification of animal movement patterns using tri-axial magnetometry

    Get PDF
    BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry

    Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in ‘Daily Diary’ tags

    Get PDF
    Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals operate. However, interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information. This work presents a single program, FRAMEWORK 4, that uses a particular sensor constellation described in the?Daily Diary? tag (recording tri-axial acceleration, tri-axial magnetic field intensity, pressure and e.g. temperature and light intensity) to determine the 4 key elements considered pivotal within the conception of the tag. These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal operates. The program takes the original data recorded by the Daily Dairy and transforms it into dead-reckoned movements,template-matched behaviours, dynamic body acceleration-derived energetics and positionlinked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.Fil: Walker, James S.. Swansea University. College Of Sciences; Reino UnidoFil: Jones, Mark W.. Swansea University. College Of Sciences; Reino UnidoFil: Laramee, Robert S.. Swansea University. College Of Sciences; Reino UnidoFil: Holton, Mark D.. Swansea University; Reino UnidoFil: Shepard, Emily L. C.. Swansea University. College Of Sciences; Reino UnidoFil: Williams, Hannah J.. Swansea University. College Of Sciences; Reino UnidoFil: Scantlebury, D. Michael. The Queens University Of Belfast; IrlandaFil: Marks, Nikki, J.. The Queens University Of Belfast; IrlandaFil: Magowan, Elizabeth A.. The Queens University Of Belfast; IrlandaFil: Maguire, Iain E.. The Queens University Of Belfast; IrlandaFil: Grundy, Ed. Swansea University. College Of Sciences; Reino UnidoFil: Di Virgilio, Agustina Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Wilson, Rory P.. Swansea University. College Of Sciences; Reino Unid

    Personality and the collective: Exploratory homing pigeons occupy higher leadership ranks in flocks

    Get PDF
    While collective movement is ecologically widespread and conveys numerous benefits on individuals, it also poses a coordination problem: who controls the group's movements? The role that animal ‘personalities’ play in this question has recently become a focus of research interest. Although many animal groups have distributed leadership (i.e. multiple individuals influence collective decisions), studies linking personality and leadership have focused predominantly on the group's single most influential individual. In this study, we investigate the relationship between personality and the influence of multiple leaders on collective movement using homing pigeons, Columba livia, a species known to display complex multilevel leadership hierarchies during flock flights. Our results show that more exploratory (i.e. ‘bold’) birds are more likely to occupy higher ranks in the leadership hierarchy and thus have more influence on the direction of collective movement than less exploratory (i.e. ‘shy’) birds during both free flights around their lofts and homing flights from a distant site. Our data also show that bold pigeons fly faster than shy birds during solo flights. We discuss our results in light of theories about the evolution of personality, with specific reference to the adaptive value of heterogeneity in animal groups

    Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Public Library of Science via the DOI in this record.Devices attached to flying birds can hugely enhance our understanding of their behavioural ecology for periods when they cannot be observed directly. For this, scientists routinely attach units to either birds' backs or their tails. However, inappropriate payload distribution is critical in aircraft and, since birds and planes are subject to the same laws of physics during flight, we considered aircraft aerodynamic constraints to explain flight patterns displayed by northern gannets Sula bassana equipped with (small ca. 14 g) tail- and back-mounted accelerometers and (larger ca. 30 g) tail-mounted GPS units. Tail-mounted GPS-fitted birds showed significantly higher cumulative numbers of flap-glide cycles and a higher pitch angle of the tail than accelerometer-equipped birds, indicating problems with balancing inappropriately placed weights with knock-on consequences relating to energy expenditure. These problems can be addressed by carefully choosing where to place tags on birds according to the mass of the tags and the lifestyle of the subject species.This study would have not been carried out without the financial support from the California Department of Fish and Game's Oil Spill Response Trust Fund (through the Oiled Wildlife Care Network at the Wildlife Health Center, School of Veterinary Medicine, University of California, Davis) and the Royal Society for Prevention of Cruelty to Animals (RSPCA, Wilberforce Way, Southwater, Horsham, West Sussex, RH13 9RS, United Kingdom). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses.

    Get PDF
    Published onlineJournal ArticleOcean acidification (OA) is expected to indirectly impact biota living in contaminated coastal environments by altering the bioavailability and potentially toxicity of many pH-sensitive metals. Here, we show that OA (pH 7.71; pCO2 1480 μatm) significantly increases the toxicity responses to a global coastal contaminant (copper ~0.1 μM) in two keystone benthic species; mussels (Mytilus edulis) and purple sea urchins (Paracentrotus lividus). Mussels showed an extracellular acidosis in response to OA and copper individually which was enhanced during combined exposure. In contrast, urchins maintained extracellular fluid pH under OA by accumulating bicarbonate but exhibited a slight alkalosis in response to copper either alone or with OA. Importantly, copper-induced damage to DNA and lipids was significantly greater under OA compared to control conditions (pH 8.14; pCO2 470 μatm) for both species. However, this increase in DNA-damage was four times lower in urchins than mussels, suggesting that internal acid-base regulation in urchins may substantially moderate the magnitude of this OA-induced copper toxicity effect. Thus, changes in metal toxicity under OA may not purely be driven by metal speciation in seawater and may be far more diverse than either single-stressor or single-species studies indicate. This has important implications for future environmental management strategies.CL was supported by a Natural Environment Research Council (NERC) UK Fellowship: NE/G014728/1. CL, RE and RW were supported by a UK-OARP NERC consortium grant NE/H017496/1. SN was supported by a Cefas-Exeter funded studentship. Thanks to Jan Shears, Darren Rowe and John Dowdle for their excellent technical support. The determination of total copper in the seawater media was undertaken by Dr. A. Fisher of the Analytical Research Facility, SoGEES, Plymouth University under ISO 9001:2008 certification. The authors would like to thank John Spicer for his insightful comments on the manuscript

    Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids : slender rivulets and dry patches

    Get PDF
    Unsteady flow of a thin film of a Newtonian fluid or a non-Newtonian power-law fluid with power-law index N driven by a constant shear stress applied at the free surface, on a plane inclined at an angle α to the horizontal, is considered. Unsteady similarity solutions representing flow of slender rivulets and flow around slender dry patches are obtained. Specifically, solutions are obtained for converging sessile rivulets (0 < α < π/2) and converging dry patches in a pendent film (π/2 < α < π), as well as for diverging pendent rivulets and diverging dry patches in a sessile film. These solutions predict that at any time t, the rivulet and dry patch widen or narrow according to |x|3/2, and the film thickens or thins according to |x|, where x denotes distance down the plane, and that at any station x, the rivulet and dry patch widen or narrow like |t|−1, and the film thickens or thins like |t|−1, independent of N

    Predictive ethoinformatics reveals the complex migratory behaviour of a pelagic seabird, the Manx Shearwater

    Get PDF
    Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover

    Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins

    Get PDF
    Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin ( Eudyptes chrysocome ) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1-3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour
    corecore